数据预处理的方法有哪些 数据预处理的五个主要方法
数据预处理的五个主要方法:数据清洗、特征选择、特征缩放、数据变换、数据集拆分。
1. 数据清洗。数据清洗是处理含有错误、缺失值、异常值或重复数据等问题的数据的过程。常见的清洗操作包括删除重复数据、填补缺失值、校正错误值和处理异常值,以确保数据的完整性和一致性。
2. 特征选择。特征选择是从原始数据中选择最相关、最具有代表性的特征子集,以减少输入特征的维度并提高模型的效果和效率。常见的特征选择方法包括过滤式方法(如方差阈值、相关系数、互信息等)、包裹式方法(如递归特征消除)和嵌入式方法(如LASSO、岭回归)等。
3. 特征缩放。特征缩放是将特征数据缩放到相同的尺度上,以避免某些特征在计算距离或损失时对模型产生过大的影响。常见的特征缩放方法包括标准化(如Z-score标准化)和归一化(如最小-最大缩放)等。
