1. 现有的音频插孔检测解决方案采用分立式元件设计,一般是比较器和相应的电阻和电容(见图1)。这种设计存在一些固有缺陷,而这些缺陷会导致电流浪费及音频杂音等用户接口问题。电路中的比较器作用有二:一是在3极(立体声耳机)或4极(带麦克风的耳机)音频插头之间进行检测,二是检测Send/End键的按压。如果插入的是一个3极插头,麦克风线被下拉到GND,比较器输出一个Low信号给基带。若连接4极插头,麦克风线通常为1.8V,属于不按压Send/End键情况。按下Send/End键时,麦克风线对地短路,比较器输出一个Low信号给基带。这就带来一个基本问题――如果连接4极耳机,同时按下Send/End键,基带记录下3极插孔,系统可能永远无法恢复。
2. 此外,这种设计还增加了两个重要部件的电流消耗。用来设置比较器基准电压的电阻分压器与电源直接相连,即使没有音频插头插入,也一直存在28µA的耗电量(图1中的I2)。麦克风偏置电路并非与系统设置隔离。如果连接4极插头,并且不需要麦克风,则麦克风偏置电路经由RMIC和麦克风消耗的电流超过500uA(图1中的I1)。即使无门控,麦克风偏置电路也会产生插入爆破音或滴答声等杂音问题。麦克风线一般是音频插孔的第4极,当插头插入或拔出时,左、右扬声器端子刮擦(scrape)麦克风偏置电路,产生插入爆破音或滴答声。所有这些问题都会增加系统设计与相关软件开发的复杂性,并导致用户体验不佳。图1现有的音频插孔检测设计
3. 音频插孔检测开关:随着手机制造商对用户体验的日益关注与努力提升,一种新的功能器件应运而生:音频插孔检测开关。像FSA8008这类检测开关器件,可连接音频插孔、基带和麦克风前置放大器(图2)。它们主要是解决现有解决方案存在的问题,同时提供更多的功能特性,如节省电路板空间、提高ESD性能、简单的基带接口,以及自动复位。图2音频插孔检测开关解决方案
